Development and Degeneration of Cone Bipolar Cells Are Independent of Cone Photoreceptors in a Mouse Model of Retinitis Pigmentosa

نویسندگان

  • Miao Chen
  • Ke Wang
  • Bin Lin
چکیده

Retinal photoreceptors die during retinal synaptogenesis in a portion of retinal degeneration. Whether cone bipolar cells establish regular retinal mosaics and mature morphologies, and resist degeneration are not completely understood. To explore these issues, we backcrossed a transgenic mouse expressing enhanced green fluorescent protein (EGFP) in one subset of cone bipolar cells (type 7) into rd1 mice, a classic mouse model of retinal degeneration, to examine the development and survival of cone bipolar cells in a background of retinal degeneration. Our data revealed that both the development and degeneration of cone bipolar cells are independent of the normal activity of cone photoreceptors. We found that type 7 cone bipolar cells achieved a uniform tiling of the retinal surface and developed normal dendritic and axonal arbors without the influence of cone photoreceptor innervation. On the other hand, degeneration of type 7 cone bipolar cells, contrary to our belief of central-to-peripheral progression, was spatially uniform across the retina independent of the spatiotemporal pattern of cone degeneration. The results have important implications for the design of more effective therapies to restore vision in retinal degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rod and cone degeneration in the rd mouse is p53 independent.

PURPOSE To determine whether p53 is required for the death of rod and cone photoreceptors in rd mice, a model of human retinitis pigmentosa, and/or for the natural degeneration of inner nuclear layer (INL) cells in the developing retina. METHODS Rod photoreceptor and INL apoptosis was assessed by TUNEL staining of mouse sagittal sections from post natal day (P) 10, 13, 15, 17, and 20 day p53+...

متن کامل

Morphological and functional abnormalities in the inner retina of the rd/rd mouse.

We investigated the effects of photoreceptor degeneration on the anatomy and physiology of inner retinal neurons in a mouse model of retinitis pigmentosa, the retinal degeneration (rd) mutant mouse. Although there is a general assumption that the inner retinal cells do not suffer from photoreceptor death, we confirmed major changes both accompanying and after this process. Changes include sprou...

متن کامل

Early Microglia Activation Precedes Photoreceptor Degeneration in a Mouse Model of CNGB1-Linked Retinitis Pigmentosa

Retinitis pigmentosa (RP) denotes a family of inherited blinding eye diseases characterized by progressive degeneration of rod and cone photoreceptors in the retina. In most cases, a rod-specific genetic defect results in early functional loss and degeneration of rods, which is followed by degeneration of cones and loss of daylight vision at later stages. Microglial cells, the immune cells of t...

متن کامل

Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice

In retinitis pigmentosa, loss of cone photoreceptors leads to blindness, and preservation of cone function is a major therapeutic goal. However, cone loss is thought to occur as a secondary event resulting from degeneration of rod photoreceptors. Here we report a genome editing approach in which adeno-associated virus (AAV)-mediated CRISPR/Cas9 delivery to postmitotic photoreceptors is used to ...

متن کامل

Reprogramming of adult rod photoreceptors prevents retinal degeneration.

A prime goal of regenerative medicine is to direct cell fates in a therapeutically useful manner. Retinitis pigmentosa is one of the most common degenerative diseases of the eye and is associated with early rod photoreceptor death followed by secondary cone degeneration. We hypothesized that converting adult rods into cones, via knockdown of the rod photoreceptor determinant Nrl, could make the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012